Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454529

ABSTRACT

Clinical and hyperinflammatory overlap between COVID-19 and hemophagocytic lymphohistiocytosis (HLH) has been reported. However, the underlying mechanisms are unclear. Here we show that COVID-19 and HLH have an overlap of signaling pathways and gene signatures commonly dysregulated, which were defined by investigating the transcriptomes of 1253 subjects (controls, COVID-19, and HLH patients) using microarray, bulk RNA-sequencing (RNAseq), and single-cell RNAseq (scRNAseq). COVID-19 and HLH share pathways involved in cytokine and chemokine signaling as well as neutrophil-mediated immune responses that associate with COVID-19 severity. These genes are dysregulated at protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins which converge to neutrophil hyperactivation in COVID-19 patients admitted to intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Subject(s)
COVID-19 , Lymphohistiocytosis, Hemophagocytic
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.08.21258481

ABSTRACT

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated, CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Age-dependent generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. The proportion of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a correlated with clinical outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Subject(s)
Acute Disease , Sexual Dysfunction, Physiological , Drug-Related Side Effects and Adverse Reactions , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20148395

ABSTRACT

The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases calls for a better characterization and understanding of the changes in the immune system. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 11 COVID-19 patients. Comparison of COVID-19 blood transcriptomes with those of a collection of over 2,800 samples derived from 11 different viral infections, inflammatory diseases and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.25.171009

ABSTRACT

Identification of patients with life-threatening diseases including leukemias or infections such as tuberculosis and COVID-19 is an important goal of precision medicine. We recently illustrated that leukemia patients are identified by machine learning (ML) based on their blood transcriptomes. However, there is an increasing divide between what is technically possible and what is allowed because of privacy legislation. To facilitate integration of any omics data from any data owner world-wide without violating privacy laws, we here introduce Swarm Learning (SL), a decentralized machine learning approach uniting edge computing, blockchain-based peer-to-peer networking and coordination as well as privacy protection without the need for a central coordinator thereby going beyond federated learning. Using more than 14,000 blood transcriptomes derived from over 100 individual studies with non-uniform distribution of cases and controls and significant study biases, we illustrate the feasibility of SL to develop disease classifiers based on distributed data for COVID-19, tuberculosis or leukemias that outperform those developed at individual sites. Still, SL completely protects local privacy regulations by design. We propose this approach to noticeably accelerate the introduction of precision medicine.


Subject(s)
COVID-19 , Ataxia , Tuberculosis , Leukemia
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.03.20119818

ABSTRACT

Severe Acute Respiratory Syndrome - Coronavirus-2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a mild to moderate respiratory tract infection in the majority of patients. A subset of patients, however, progresses to severe disease and respiratory failure with acute respiratory distress syndrome (ARDS). Severe COVID-19 has been associated with increased neutrophil counts and dysregulated immune responses. The mechanisms of protective immunity in mild forms and the pathogenesis of dysregulated inflammation in severe courses of COVID-19 remain largely unclear. Here, we combined two single-cell RNA-sequencing technologies and single-cell proteomics in whole blood and peripheral blood mononuclear cells (PBMC) to determine changes in immune cell composition and activation in two independent dual-center patient cohorts (n=46+n=54 COVID-19 samples), each with mild and severe cases of COVID-19. We observed a specific increase of HLA-DRhiCD11chi inflammatory monocytes that displayed a strong interferon (IFN)-stimulated gene signature in patients with mild COVID-19, which was absent in severe disease. Instead, we found evidence of emergency myelopoiesis, marked by the occurrence of immunosuppressive pre-neutrophils and immature neutrophils and populations of dysfunctional and suppressive mature neutrophils, as well as suppressive HLA-DRto monocytes in severe COVID-19. Our study provides detailed insights into systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the peripheral myeloid cell compartment associated with severe courses of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL